IITEIIITIOIAL HIUIIIL OF

SOLIDS a
STHIIGTIIIIES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 38 (2001) 3795-3811

Stress profiles for tapered cylindrical cavities in granular media
James M. Hill *, Grant M. Cox

School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, NSW 2522, Australia
Received 18 October 1999; in revised form 29 May 2000

Abstract

The formation of almost vertical cylindrical tunnels known as piping or rat holes in stockpiles and hoppers cause
serious disruptions to the reclaiming of material. The authors have recently shown that the classical rat-hole theory
proposed by Jenike and his coworkers involving the so-called “stable rat-hole equation” is not as accurate as it might
be. Specifically, it is shown that the function appearing in the stable rat-hole equation which is conventionally denoted
by G(¢) and referred to as the rat-holing function, is not a good approximation of the exact numerical solution. Jenike’s
original theory assumes a symmetrical stress distribution which is independent of height. In practice, however, rat holes
tend to exhibit some tapering with height, and the purpose of this paper is to determine the stress profiles corresponding
to a symmetrical but slightly tapered circular cavity. Stress distributions are found which are a perturbation of those
arising from classical theory, and separable solutions involving exponential functions in the height are used to “mimic”
a slightly tapered cavity. Four numerical examples are presented, and departures from the standard theory are shown
graphically. For slightly tapered rat holes occurring in stockpiles, the work presented here constitutes the first rigorous
mathematical analysis of this important problem. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Tapered cylindrical cavities; Rat holes; Granular materials; Coulomb-Mohr yield condition; Plastic regimes; Principal
stresses

1. Introduction

Stockpiles and hoppers are widely used throughout many mineral and mining industries to store and
recover material. From a practical perspective, we would like to efficiently remove material from the
stockpile or hopper at a uniform and uninterrupted rate of flow. Therefore, the occurrence of almost
vertical tunnels inside stockpiles or hoppers, which prevents the flow of material, is an unwanted phe-
nomenon, and we would like to understand the conditions under which such phenomenon occurs. These
tunnels are commonly known as “‘rat holes”, and the process of their formation is referred to as “piping”.
Once a rat hole has formed in a stockpile, the material around the surface of the hole often dries out and
sets as a solid material. This makes the removal of rat holes more difficult, and often, they have to be
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destroyed manually and the stockpile completely reshaped. Practising engineers believe that the classical
rat-hole theory enunciated by Jenike (1962) and Jenike and Yen (1962a,b) does not accurately reflect actual
material behaviour. In Hill and Cox (2000), the present authors showed that the stable rat-hole equation
proposed by Jenike and his coworkers is in fact not a good approximation of the exact numerical solution.
The purpose of this paper is to determine the stress distributions for stockpile rat holes which are slightly
tapered, and we exploit the classical stress distributions as the basis for a perturbation scheme. We com-
ment that for rat holes occurring in bins, an approximate analysis, based on the method of “‘slices”, which
does incorporate some height variation is provided by Johanson (1969). We emphasize that for slightly
tapered stockpile rat holes, the work presented here constitutes the first rigorous full mathematical analysis
of the problem.

Typically, a stockpile rat hole appears as indicated in Fig. 1, where 6 denotes the angle of repose, and «
and 7y denote small angles. For the idealized situation of a symmetrical cylindrical rat hole and with the axis
as shown in Fig. 1, the limiting equilibrium equations become

00, 00, 0, — 0y

i - 1
or Oz r 0, (la)
0o, Q0. 0.
o o TP (1b)

where p is the bulk density of the material, g is the acceleration due to gravity, o,.,6,., etc. denote the
stresses in a cylindrical polar coordinate system (r, ¢,z), which assumed to be independent of ¢. In ad-
dition, the material is assumed to satisfy the Coulomb-Mohr yield condition,

|t| = ¢ — 0" tand, (2)

where c is the cohesion, J is the angle of internal friction, and ¢* and t denote the normal and tangential
components of compressive traction, which here we assume to be positive in tension. That is, we adopt the
usual convention in continuum mechanics that positive forces are assumed to produce positive extensions.

In this paper, we assume that slightly tapered cylindrical cavity profiles such as those depicted in Fig. 1
can be represented by an expression of the form,

r=ry+ &R(z), (3)

where ry is assumed to be independent of the height z, and ¢ is a small non-dimensional parameter. The
distinction from the classical theory is shown schematically in Fig. 2. We emphasize that we have in mind
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Fig. 1. (a) Schematic drawing showing a single tapered cylindrical cavity in a stockpile and (b) schematic drawing showing a double
tapered cylindrical cavity in a stockpile.
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Fig. 2. (a) Right circular uniform cylindrical cavity and (b) cylindrical cavity with height variation.

slightly tapered cylindrical cavities for which the correction terms of order ¢ are much smaller than the
corresponding terms for a perfectly circular cylindrical vertical cavity. Further, R(z) is a function of z which
we assume can be approximated by an expression of the form

R(z) =) Ry ™" (4)

for certain constants o, and R, (n = 1,2, ..., N). For example, we show that the cavity profile shown in Fig.
1(a) can be adequately approximated by the two term expression,

R(z) = R (1 + ™), (5)
assuming that tan o = ¢. On the other hand, we may show that the cavity profile shown in Fig. 1(b) can be
approximated by the three term expression,

R(Z) = Rl + Rzeinz + R3Cﬂx3z, (6)
assuming that tan « = ¢ and tany = K¢ for some K > 1.

Corresponding to a slightly tapered cylindrical cavity of the form (3), we assume that the non-zero
stresses are a small perturbation of those for the classical theory, namely,
Urr'(raz) = O-rrO(r> + E07y] (1’7 2)7 O-rz(r7 Z) = O-rz()(r> + &0,z (I",Z),

0.(r,z) = 0.0(r) + €01 (r,2), 044 (1, 2) = Gpgo(F) + €091 (1, 2),

()

where ¢ is the small parameter defined by Eq. (3), and the quantities 7,1, 7,.1, etc. are unknown functions of
r and z. We assume that the stresses (7) obey a pressure boundary condition at the cavity wall, of the form,

a; = —Pnj, (8)
where ¢; (j = 1,2,3) denotes the stress vector, P is the assumed external pressure and n; (j = 1,2,3) de-
notes the components of the normal vector to the cavity surface. From Fig. 3, the normal vector to the
surface of the sidewall of the unstable rat hole can be seen to be given by

n=(—cosl(z), 0, sinb(z)), 9)
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Fig. 3. Angle 0(z) for a cylindrical cavity with height variation.

where 6(z) is the angle the normal vector n makes with the r axis. Therefore, from Egs. (8) and (9), on
assuming that the external pressure P is zero, we find

o, =0, g, =0, (10)
and upon expanding Eq. (10), using the fact that ¢; = o;;n', we obtain

— 0, (ro + eR(z2),2) cos 0(z) + 6,.(ro + €R(z),z) sin O(z) = 0,

— 0,2(ro + €R(2),2) cos 0(z) + 6..(ro + €R(z),z) sinO(z) = 0. ()
Now, at the cavity wall, we see from Fig. 3
0(z) = tan™' (dr/dz), (12)
and upon expanding Egs. (11) and (12), we may deduce the following conditions:
ar0(ro) =0, ,20(r0) = 0, (13)
0,01(r0,2) = —R(2) (dg—:ﬂ) , 0,21(r0,2) = —R(2) <%> + R'(2)0.0(r0), (14)
r=ro r=rg

and we note that the zeroth order conditions are simply those used in the classical theory.

In Section 2, we present the governing equations for the slightly tapered rat hole assuming separable
solutions for the stresses. In Section 3, we derive a second order ordinary differential equation from which
we can determine the stresses in the slightly tapered rat hole. In Section 4, we consider various two and
three term approximations for R(z) of the form (4), and apply these to the single and double slightly tapered
rat holes as shown in Fig. 1(a) and (b), respectively.

2. The governing ordinary differential equations

In this section, we determine the governing ordinary differential equations for a slightly tapered rat hole.
To do this, we assume that the stockpile is at equilibrium, and that the rat hole is on the point of collapse,
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so that the equilibrium equations (1a) and (1b) apply and the stresses are given by Eq. (7). We then assume
that the unknown functions 6,,1, 6.1, 0-.1, and g4¢; can be expressed as a sum of separable variable func-
tions, where the z dependence is uniform for each of the stresses. Thus, we assume

N

o (r2) = > ANEz),  0m(rz) = Bi(r)Ez),

i=1 i

. N (15)
01(r,2) = C(nEi(z), oy (r,2) =Y Di(r)Ei(2).

i=1 i=1
We then find that upon substituting Eqgs. (7) and (15) into Eq. (1a) for each i (i =1,2,...,N), we require

d4;
dr

4E | AEC) = DIVEE) (16)

Ei(z) + Bi(r)

and therefore, each E;(z) must satisfy an equation of the form

dE;
dz

= —0;E(2) (17)

for certain constants ;. Therefore, from Eq. (17), we find E;(z) = e™** on incorporating the constant of
integration into the functions of r. From Eq. (16), we find that the equation becomes

d4; — wBy(r) +A,-(r) — Di(r)

dr =0 (18)

and similarly for Eq. (1b), we obtain

dB;
dr % Ci(r) + r

—0. (19)

Now, on assuming that the granular material satisfies the Coulomb—Mohr yield condition defined by Eq.
(2), we find, from Hill and Cox (2000) or Hill and Wu (1992), that this yield condition becomes

where f§ = sin J, f. is the unconfined yield strength defined by o; = 0 when oy = —f¢, and /. can be written

as
1/2

and oy, 0y, and oy denote the maximum, intermediate, and minimum principal stresses, respectively.
Further, we have also assumed that of the seven possible plastic regimes available for axially symmetric
stress states, the material is in plastic regime A4, which means that the stresses satisfy the inequality
o1 > oy = d4¢. The seven plastic regimes are well known and can be found in tabular form in either Hill
and Wu (1992) or Cox et al. (1961). It is clear that a relation between the principal stresses and the stresses
in the rat hole is needed. Hill and Cox (2000) show that the maximum and minimum principal stresses for
the classical rat hole are given by



3800 J.M. Hill, G.M. Cox | International Journal of Solids and Structures 38 (2001) 3795-3811

1
g1, = 5 {(O'rro + UzzO) + [(O-rro - 0-220)2 + 4(7,270]1/2}7 (203)
Oy = O¢¢0, (ZOb)
1 2 2 q1/2
om, = 5 {(m + 020) = (00 — 0220)" + 40g)] } (20c)

In order to determine the principal stresses for the slightly tapered rat hole, we note that the principal
stresses are defined by the eigenvalue equation,

Oz 0 — U 0 = Oa
0 0 gy —p

where p denotes a principal stress for the slightly tapered rat hole. We then assume that we can write
u =y + e, where p, denotes a principal stress for the uniform rat hole, and g, is an unknown function of
r and z. Therefore, upon substituting Eqgs. (7) and (15) into the eigenvalue equation and noting that g,
satisfies the equation

(a¢¢0 — o) [(Urro — 1) (020 — Hg) — Uzzo] =0,
we can solve for y,, obtaining the expression
N N
By = [(Uzzo = o) (Tg0 — Ho) ZAi(”)efm + (00 — Ho) (G490 — Ho) Z Ci(rje ™
i=1 i=1
N N N
+ (UrrO - “0)(0220 - :u()) ZDi(r)eiziZ - 26r20(6¢¢0 - MO) ZBi(r)eiziz - 6320 ZDi(r)eiziz
i=1

i=1 i=1

/[(Urro — Ho)(T=0 — o) + (Tr0 — o) (G g0 — o) + (020 — 119) (g0 — Ho) — Tr] (21)

Thus, if we define

AO - \/(O—rro - 0_220)2 + 40',2.207 Z‘0 = 0,0 — 020, (22)

then it can then be shown that if we substitute Eq. (20a) into Eq. (21) for ,, then u; becomes

= Z ZA [(Zo + 40)A4i(r) + 40,0B,(r) — (Zo — 40)Ci(r)),

and similarly, if we substitute the third term of Eq. (20c) into Eq. (21), then we get

e %7

H = 2:1: 24, [(= 20 + 40)A4i(r) = 40,20Bi(r) + (20 + 40)Ci(r)],

and finally, if we let y = 0440, then we find that g, = 31, Di(r)e ",
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Therefore, the maximum and minimum principal stresses for the slightly tapered rat hole are

N —az
e
or=01,+&Y >4 [(Zo 4 A0)A;(r) + 40,0B:(r) — (Zo — 40)Ci(r)], (23a)
i=1
N
oy = GHO + & ZDi(V)eio(iz, (23b)
i=1
N ez
g = 0'”10 + & Z 2A [( — Z(] + A())A,’(r) — 40—rzOBi<r) + (ZO + A())Cl(r)] (230)
i=1 0

Therefore, upon substituting Egs. (23a), (23b) and (23c) into the Coulomb-Mohr yield equation, we find
that the stresses for the slightly tapered rat hole are related by the equation

(Z(] + ,BA())A,(I’) + 40',-2()Bi(l’) — (ZO — ﬁA())C,(I’) =0
fori=1,...,N. Now from Eq. (22), we find

12 12
402 46,08, 402
148 1+#2 +6+®—Ci(r) 1B 1_,_%2 =0.
(O-rrO - OFzz()) (O-r 70 GZZO) (GrrO - O-zz())

Following Hill and Cox (2000), we introduce

Ai(r)

2 0,20

tan 2y, = (24)

G0 — 0220 ’
so that the Coulomb-Mohr yield condition becomes
A;(r)(cos 2y, + B) + 2B;(r) sin 2y, — Ci(r)(cos 2y, — f) = 0 (25)

fori=1,...,N and y, is the known function of r defined by Eq. (24).
To determine the fourth equation, we recall that we are in plastic regime 4, which has the stress relation
o1 > 0441 = om. Therefore, from Eq. (7) and (23b), we find, for each i =1,2,...,N, that

Ai(l’)(—ZO + A()) — 40',203,'(}’) + Ci(}’)(ZO + A()) = 2AODi(l’),

and hence, from Eq. (25), we obtain the relation
1
Di(r) =5 (1 + p)lAi(r) + Gi(r)]- (26)

Therefore, Egs. (18), (19), (25), and (26) constitute the four determining equations for the unknown
functions 4;(r), B:(r), C;(r), D;(r) for each i = 1,2,...,N.

3. The differential equation for B;(r)

In this section, we consider the four governing equations developed in Section 2, namely, Egs. (18), (19),
(25), and (26), and determine a second order ordinary differential equation for B;(r) by eliminating the other
unknowns.

Upon substituting Eq. (26) into Eq. (18), we find that we have eliminated D;(r) to get the equation
d4; (1= p)ai(r) = (1 + B)Ci(r)
dr 2r

and we note from Eq. (19) that

— 0;By(r) + =0, (27)
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Ci(r) = al {dB" + B"(r)} : (28)

dr r

and therefore, Eq. (27) becomes

d4;, (1-p) ~ (L+p)[dB;  Bi(r)
err 2r Ai(r)Tir{dr r

] + 0;Bi(r). (29)

If we also substitute Eq. (28) into Eq. (25), then we find

atr) =" P B0 ), (30
where
_cos2y, — B _ 2sin2y
s1(r) _cos2lpz+[3’ $2(r) _cos21p0—|—0/3' (31)

Hence, upon substituting Eq. (30) into Eq. (29), we get the second order ordinary differential equation for
Bi(l"):

B, s, 1 s (1-=p) (1+p)]dB;
0= dr? {;4—;—%;4— 2% 2rs) ]dr
s 1 s (A=) (1-p (1+p) =],
* [rsl 72 (x’sl—’_ 22 %is2 2rsy 2r2s, S1 Bi(r) (32)

fori=1,...,N, and from Egs. (14), (15), and (30), we can see that the boundary conditions on B; are

N darz /
>t ) = k(G2 ) + RGNl
n=1 =

dB; 1+ p 1 (33)
(&), ~=(i 55w o0
where 4;(ry) is determined from
N
;e‘“”ZA,,(rO) = —R(2) (‘E’j’)rw. (34)
In order to simplify matters, we make the transformations
r=mn/o, B, = 0;%;, A; = oo, (35)
which transforms Eq. (32) into
o il 0op_h)dn
dn? stono s 2n 2nsy | dn

where s, and s, are now functions of 7, and upon noting Eq. (4) and expanding it, we find that the boundary
conditions for %, at n = o;ry become
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d rz
Bi(oro) = —Ri< d 0) — Rio0 (o),
dn /o

d%,’ 1 +ﬁ) (dO'r,-()) 1
= Ri T - ‘@i oiro ),
( dT’ );71,r0 < 1 - ﬁ d’? n=04rg oiro ( 0)

and we note that we consider each 4, at the different initial values, namely, n = o;7,. Thus, we now have a
differential equation for 4; with two explicit boundary conditions at n = a;7. Further, due to the com-
plexity of the coefficient functions of 2%;,d#;/dy, and d*4;/din?, we will solve Eq. (36) subject to Eq. (37)
numerically. This is essential since, in fact, we can only determine s; and s, numerically in general.

(37)

4. Special cases for R(z)

In this section, we consider two possible shapes for the rat hole and approximate the required shape
using a sum of exponentials (4). Once we have determined the unknown constants in Eq. (4), these are then
used to solve the system of differential equations defined by Eq. (36) with the boundary conditions (37). We
note that there is no unique procedure for this approximation, and indeed, the procedure adopted here for
three terms for the double slightly tapered rat hole gives rise to two possible solutions.

4.1. Single slightly tapered rat hole

For a single slightly tapered rat hole as shown in Fig. 1(a), the equation describing the sidewall of the rat
hole is

r=ro+z tana. (38)

Assuming a finite height H; and that the sidewall of the rat hole can be approximated by a sum of ex-
ponentials as defined in Eq. (4), we find for a two term sum, that we wish to approximate Eq. (38) by an
expression of the form

r=ry+ e(Rie™™* + Re™ ™) (39)

for certain unknown constants ay, a,, Ry, and R,. For simplicity, we assume «; = 0, and we determine the
unknown constants by first assuming that Egs. (38) and (39) coincide at the bottom of the rat hole, namely,
at z = 0, from which we find that R, = —R;. Secondly, we assume that Eqs. (38) and (39) coincide at the top
of the rat hole, namely, at z = H;, from which we find

H1 :Rl(l _e—azH1)7 (40)

where we have assumed tana = ¢.
Thirdly, we assume that for each z, the maximum horizontal difference between Eqgs. (38) and (39) is ¢,
and we find

Ri(l—e™)—z—-1<0 (41a)
or

z—=1-Ri(1-¢e")<0, (41b)
where Eq. (41a) is used when the right-hand side of Eq. (39) is larger than the right-hand side of Eq. (38), or
in other words, the approximate solution is on the “outside’ of the rat hole, and similarly, Eq. (41b) is used

when the right-hand side of Eq. (39) is smaller than the right-hand side of Eq. (38), or in other words, the
approximate solution is on the “inside” of the rat hole.
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Here, we have assumed that the approximate solution is on the outside of the rat hole, and therefore,
from Eq. (41a), we find that the maximum value occurs when

1
z=—1In O(2R17 (42)
£%)
which, combined with Eq. (41a), gives the relation
Ri(1 ! ! InopR; =1 (43)
1 R, % nopry = 1.

Therefore, from Egs. (40) and (43), we have two equations for the two unknowns R, and o,, and hence, R(z)
can be determined.

We note that the transformations (35) are only well defined for «; # 0. For o = 0, we solve the gov-
erning equations (32) subject to Eq. (33), from which we find the boundary conditions

o dO'rZ() dB] - 1
=)o (%) e o

4.2. Double slightly tapered rat hole

For a double slightly tapered rat hole as shown in Fig. 1(b), where y is a small angle such that y > o, we
denote H; to be the height where the sidewall of the rat hole changes slope from tana to tan ), and H, to be
the height of the double tapered rat hole. We find that the equations of the sidewall of the rat hole are given
by

r=ryg+eée for 0<z<H,

r:7‘0+8((1—K)H1+KZ) for H1<Z<H27 (45)

where we have assumed that tano = ¢ and tany = K¢ for some K > 1.

Now, assuming that Eq. (45) can be approximated by a sum of exponentials as defined in Eq. (4) for

o; = 0 and assuming that Eqgs. (39) and (45) coincide at the bottom of the rat hole and at the change of

slope of sidewall at z = H|, we find that R, = —R; and that Eq. (40) holds. Further, we assume that Egs.

(39) and (45) coincide at the top of the double slightly tapered rat hole, namely, at z = H,, which gives us
the relation,

(1 — K)H, 4+ KH, = Ry (1 — e*'), (46)

and we see from Eq. (39) that Egs. (40) and (46) determine the unknown constants o, and R;. We also note
that the appropriate boundary conditions for the double slightly tapered rat hole with the approximation
(39) for oy = 0, where o, and R, are determined from Egs. (40) and (46), are given by Egs. (37) and (44).

We now assume that the sidewall of the double slightly tapered rat hole as shown in Fig. 1(b) can be
approximated by a three term sum of exponentials as defined by Eq. (4). Hence, we approximate the
sidewall of the rat hole described in Eq. (45) by

r=ry+ 8(R1eimlz + Rzeiazz + R}eiasz) (47)

for some unknown constants «; and R; and for i = 1,2, 3. Following the previous two-term approximations,
we again assume for simplicity that «; = 0 and that Egs. (45) and (47) coincide at the bottom of the rat hole,
at the change of slope of the sidewall at z = H;, and at the top of the rat hole, which respectively, yield,
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Rl + R2 + R3 = 0,
Rl +Rzeia2Hl +R3€713H1 = Hl, (48)
R] +R267M2H2 <|’R36713H2 = (1 — K)H] +KH2

We have three equations for five unknowns, and therefore, we require two additional constraints between
the unknowns. From Section 4.1, we assume, for 0 <z < H;, that the maximum horizontal difference be-
tween Eqs. (45) and (47) is ¢, so that

R1 + Rzeimzz + R3e’“3z —z—1 < 07 (493)
or
z—1-— R1 — Rze_“zz — Rge_“3z < 07 (49b)

where Eq. (49a) is used when the solution is on the outside of the rat hole and Eq. (49b) is used when the
solution is on the inside of the rat hole. If we denote z; as the value of z that gives the maximum value of
Egs. (49a) and (49b) then for both equations, z; is determined from

Ry 4 o3R3e™ ! 4+ 1 =0, (50)

which is a transcendental equation for z;. Once z; is determined, we can then substitute z; into Egs. (49a)
and (49b) to obtain a new single condition on the unknowns, which depends on whether the solution is on
the outside or on the inside of the rat hole. However, as the values of o, a3, R, and R; are unknown, we
must treat z; as an unknown and include Eq. (50) as an additional condition.

Similarly, we assume that for H, <z < H,, we require the maximum horizontal difference between Egs.
(45) and (47) to be &, which yields

Rl + Rzeiazz + Rgeiasz — (1 — K)Hl —Kz—1 < 0, (513.)
or
Kz + (1 —K)Hl —1 —R1 — Rzeizzz —R3e’“3z<0, (Slb)

where Eq. (51a) is used when the solution is on the outside of the rat hole and Eq. (51b) is used when the
solution is on the inside of the rat hole. If we denote z, as the value of z that gives the maximum value of
Egs. (51a) and (51b) then for both the equations, z, is determined from

M2R267x222 + M3R367“3ZZ +K = 0, (52)

which is also a transcendental equation for z,. Once z, is determined, we can then substitute z, into Egs.
(51a) and (51b) to deduce a new single condition on the unknowns, which depends on whether the solution
is on the outside or on the inside of the rat hole. However, as the values of o, a3, R>, and R; are unknown,
then we must treat z; as an unknown and include Eq. (52) as an additional condition.

We now have seven equations for seven unknowns which may be solved numerically. The appropriate
boundary conditions for the double slightly tapered rat hole with the approximation (47) for o = 0 are
given by Egs. (37) and (44).

5. Conclusions

For slightly tapered cylindrical vertical cavities, we have provided the first rigorous mathematical
analysis of the limiting equilibrium equations (1a) and (1b) for the plastic regime 4 to determine an axially
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symmetric stress distribution which is a perturbation of the classical Jenike solution for a perfectly right
circular cylindrical cavity. The perturbations are assumed to be separable functions of r and z, and it is
shown that the only allowable dependence on z must be exponential. For a slightly tapered rat hole with
profile » = ry + ¢R(z), we have solved numerically a second order ordinary differential equation using
boundary conditions arising from the fact that the cavity is stress free. We have numerically determined
four solutions for four different shapes of the sidewall of the slightly tapered rat hole using a possible, but
not a unique set of constraints to determine R(z), and we have evaluated the stress approximations on the
plane z = 0. For all numerical solutions, we assume the constant values of p = 0.7, g =9.8, f = 0.5 and
fe=15.2.

Fig. 4 shows the single slightly tapered rat hole as the shaded area with the mesh boundary showing the
approximate solution on the outside of the rat hole for R(z) defined by Eq. (39) with o, = 0.53, R} = 4.55,
and ¢ = 1/12. Fig. 5 shows the approximate stresses relative to the classical stresses applying to a right
circular cylindrical rat hole. In particular, o,, is initially higher but then is below the classical estimate, while
o,. 1s always below the classical estimate. .. starts at the classical estimate and then goes below while g, is
initially higher and then goes below 7 40.

Fig. 6 shows the double slightly tapered rat hole with the boundary of the shaded area showing the
approximate solution on the inside of the rat hole for R(z) defined by Eq. (39) with o, = —0.59, Ry = —0.41,
e¢=1/12, and y = 25°. From Fig. 7, we see that the approximate stresses follow the classical stresses. In
particular, o, is very close to the classical estimate, while g,, starts higher, but then asymptotes to the
classical estimate. ¢.. and o4 are in excess of the classical estimates.

’T‘/T‘o

1 05 05

Fig. 4. Single tapered rat hole with mesh showing approximation on the outside of the rat hole which is shown by the shaded area and
with R(z) defined by Eq. (39).
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Fig. 5. Classical and approximate stresses corresponding to Fig. 4.
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Fig. 6. Double tapered rat hole with shaded region showing approximation on the inside of the rat hole which is shown by the mesh
boundary and with R(z) defined by Eq. (39).
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Fig. 7. Classical and approximate stresses corresponding to Fig. 6.

Fig. 8 shows a double slightly tapered rat hole with the approximated cavity profile being the shaded
area in the lower region and the mesh boundary in the upper region. Here, R(z) is defined by Eq. (47) with
oy = —1.15, a3 = 0.70, R; = 3.802, R, = 0.004, R; = —3.806, ¢ = 1/12, and y = 9°. In this case, the ap-
proximate solution starts on the outside of the rat hole, similar to Fig. 4, and then proceeds to the inside of
the rat hole at the change of slope, similar to Fig. 6. Therefore, for the approximate stresses on the plane
z =0, it is not surprising to see that they behave in a fashion similar to those for Fig. 4.

Fig. 10 shows the double slightly tapered rat hole with the approximate cavity profile being the mesh
boundary in the lower region and the shaded area in the upper region. For the approximate solution shown
in Figs. 8 and 9, there are two profiles, namely, that given in Fig. 8 and that given in Fig. 10, which is the
shaded area in the lower region and the mesh boundary in the upper region (Fig. 11). For this shape, R(z) is
defined by Eq. (47) with o, = —0.55, a3 = —1.95, Ry = —0.5144, R, = 0.5145, R; = 0.00004, ¢ = 1/12, and
y = 9°. Here, the approximate solution is on the inside in the lower region, similar to Fig. 6, and on the
outside in the upper region, similar to Fig. 4. Therefore, the approximate stresses on the plane z = 0 behave
in a fashion similar to those shown in Fig. 6.
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Fig. 8. Double tapered rat hole with approximation as the mesh on the outside in the lower region and as the shaded area on the inside
in the upper region and with R(z) defined by Eq. (47).
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Fig. 9. Classical and approximate stresses corresponding to Fig. 8.
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Fig. 10. Double tapered rat hole with approximation as the shaded area on the inside in the lower region and as the mesh on the outside
in the upper region and with R(z) defined by Eq. (47).
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Fig. 11. Classical and approximate stresses corresponding to Fig. 10.
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